| Syllabus | PC_IK_11 | |----------|---------------------| | Topic | Oesophageal doppler | You have opted to use an oesophageal doppler in a patient undergoing an emergency laparotomy for small bowel obstruction. a) Label the diagram of an oesophageal doppler trace below (4 marks) | 1 | | |----|--| | Τ. | | 2. 3. Area under the curve: 4. Gradient: |) | | | | |---|--|--|--| | How do you insert an oesophageal doppler? (4 marks) | c) Define the following terms (8 marks) | Term | Definition | |------------------------------|------------| | Peak velocity | | | Cardiac output | | | Stroke volume | | | Flow time
corrected (FTc) | | | • > | | d) List 2 circumstances that may cause the doppler probe to give inaccurate readings, even if the probe is positioned appropriately? (2 marks) 1. 2. This an intraoperative screenshot for the patient | e) | | | |--|--|--| | What is the likely cause for this waveform? (1 mark) | f) | | | | · | | | | What would your immediate management be? (1 mark) | | | | · | | | | · | | | | · | | | | · | | | | Syllabus | PC_IK_11 | |----------|---------------------| | Topic | Oesophageal doppler | | Q | Answer | Mark | Guidance | |----|---|--------------|--| | a) | 1. Peak Velocity | | | | | 2. Gradient/Mean acceleration | 4 | | | | 3. Stroke distance | | | | | 4. Flow time | | | | b) | Oral or nasal route | | • Oral: 35-40 cm | | | Lubricate with aqueous gel - prevents | | • Nasal: 40-45 cm | | | signal disturbance | | | | | Descending aorta ~35-40cm from mouth | 4 | Roughly level of T5 / T6 | | | adjacent to oesophagus | | | | | When at appropriate depth rotate bevel | | | | | so it faces posterior towards aorta | | | | | Manipulate probe to achieve best signal | | | | c) | Peak velocity: | | Stroke Volume - Due to slight | | | The peak velocity of blood in the aorta | | beat-to-beat variability in | | | gives a good estimate of the contractility | | stroke volume, the reading is | | | of the myocardium | | usually averaged over several | | | Cardiac output: | • | beats. The number of beats | | | The cardiac output is calculated from the | 2 | used for this calculation is | | | stroke volume multiplied by the heart rate | marks | the <i>cycle length</i> . A cycle | | | Stroke volume: | for | length of five beats is usual, but can be increased to | | | Stroke distance is the area under the | each
term | improve the accuracy of | | | velocity-time waveform. When multiplied | (Max. | stroke volume estimation | | | by the aortic diameter, this gives a good | 8 | when there is marked beat- | | | estimate of the stroke volume
Flow time corrected (FTc): | _ | to-beat variability, for | | | The flow time is the duration of forward | marks | example, atrial fibrillation or | | | flow of blood in the aorta i.e. it is the | | other arrhythmias | | | width of the base of the velocity-time | | | | | waveform. The flow time varies with heart | | | | | rate. To compensate for this, the flow | | | | | time is corrected to a heart rate of 60 | | | | | beats per minute (bpm) by dividing the | | | | | flow time by the square root of the | | | | | cardiac cycle time (analogous to | | | | | correcting the QT interval in | | | | | electrocardiogram [ECG] interpretation) | | | | | | | | | | | | | | | | | | | d) | Coarctaton of aorta Thoracic aortic aneurysm Presence of intrathecal/epidural anaesthethic | 2 | Thoracic aortic aneurysm especially during cross clamping Neuraxial – causes lower limb vasodilatation | |----|--|-------|---| | e) | HypovolaemiaHypothermia | Any 1 | Note the small stroke volume and reduced FTc. A similar waveform may also be seen in patients with hypothermia or in those on vasopressors. Hypovolaemia is only proved if there is a response to a fluid challenge | | f) | Give fluid bolus Check/start warming devices | Any 1 | | ## References: - 1) Drummond KE, Murphy E. Minimally invasive cardiac output monitors. (2012) CEACCP 12(1)5-10 https://bjaed.org/article/S1743-1816(17)30182-8/pdf - 2) E-Learning for Health module: Anaesthesia e-LA > eLibrary > CEACCP/BJA Education 2001 2019 > e-LA eLibrary CEACCP 2012 > CEACCP Feb 12 - 3) Aston D, Rivers A, Dharmadasa. Equipment in anaesthesia and critical care (2013)